Date

William Webber, Alistair Moffat, and Justin Zobel. 2010. A similarity measure for indefinite rankings.
ACM Transactions on Information Systems (TOIS) 28, 4. 1-34.

How to set the p parameter: Equation 21

$$W_{rbo}(1:d) = 1 - p^{d-1} + \frac{1-p}{p} \cdot d \cdot \left(ln\frac{1}{1-p} - \sum^{d-1}_{i=1}\frac{p^i}{i}\right)$$

from __future__ import division
import numpy as np
def w_rbo(p=0.9, d=10):
    """Calculate weight of first d rankings with parameter p"""
    w = 1 - p**(d - 1) + ((1 - p) / p) * d * (np.log(1 / (1 - p)) - sum(p**i / i for i in range(1, d)))
    return w
w_rbo(p=0.9, d=10)
0.85558544674735182

pg. 19:

Equation 21 helps inform the choice of the parameter $p$, which determines the degree of top-weightedness of the RBO metric. For instance, $p = 0.9$ means that the first $10$ ranks have $86\%$ of the weight of the evaluation;

$$ 86\% $$

$$ 0.85558544674735182 $$

$$Nice$$

to give the top $50$ ranks the same weight involves taking $p = 0.98$ as the setting.

w_rbo(p=0.98, d=50)
0.85223391031940043

$$ 86\% $$

$$ 0.85223391031940043 $$

$$Sick~almost,~but~whatever$$

Thus, the experimenter can tune the metric to achieve a given weight for a certain length of prefix.

$$Dope$$